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Abstract--This paper describes an approximate thermal analysis of a regenerative heat exchanger. The 
approximation used relies on the fact that the dimensionless parameters, known as the reduced periods, 
are not too large, a condition which is made more precise in the paper, and which is true for all power 
station air heaters. There is no upper limit on the reduced lengths with which the method can cope. The 
method gives time averaged fluid outlet temperatures which are equivalent to those deduced from an 
analysis of an equivalent recuperator by Hausen (Verfahrenstecknik Z. Vet. Dr. Ing. 2, 3143  (1942)). The 
method also predicts the variation of fluid and heat exchange element temperatures with position and time. 
The method is generalized to cover the case of a regenerator with two or more zones with different heat 
transfer coefficients in each zone. This has applications in power station regenerative air heaters where 
different heat exchange elements are frequently used in the hot and cold zones of the heater, and to high- 
temperature regenerators where the variation of fluid properties with temperature can be approximated by 
splitting the regenerator into a number of zones, with constant properties in each zone. The results are 
compared with a finite difference solution of the regenerator problem for sets of plant data. The ability of 
the method to cope with long regenerators is also demonstrated, and the results are compared with Hausen's 

solution and with standard results obtained from the literature. 

1. INTRODUCTION 

REGENERATIVE heat  exchangers  are widely used in 
industr ia l  processes for the exchange of  heat  between 
two gas streams. A regenera tor  consists of  a porous  
packing of  solid mater ia l  t h rough  which fluids can 
flow. In the opera t ion  of  a regenerator ,  a ho t  gas 
(e.g. flue gas leaving a power  s ta t ion boiler) is passed 
th rough  the solid, and  gives up  heat  to the solid. 
Subsequent ly  a cold fluid (e.g. combus t ion  air  for the 
boiler) is passed th rough  the solid in the opposi te  
direction,  and  receives heat  f rom the solid. In a fixed 
bed system at least two regenerators  are required for 
con t inuous  operat ion,  and  the periodic reversal of  
flow in each regenera tor  is achieved by a series of  
valves. A n  al ternat ive conf igurat ion is the ro tary  
regenera tor  in which the solid heat  exchange mater ia l  
is packed in a drum.  This  d rum is then  ro ta ted  relative 
to the air and  gas s t reams by either ro ta t ing  the drum,  
or by using a s ta t ionary  d rum and  directing the flow 
th rough  ro ta t ing  headers  (Fig. 1). 

Regenera tors  have advantages  over  recuperators  
(heat  exchangers  in which the hot  and  cold fluids flow 
cont inuous ly  and  exchange heat  via a c o m m o n  solid 
wall) in a n u m b e r  of  applications.  In h igh- tempera ture  
appl icat ions they allow the use of  simple mater ia ls  
for the heat  exchange material ,  such as firebricks or 
ceramic checkers. The classic h igh- tempera ture  appli- 
cat ion of  a regenera tor  is the Cowper  Stove as used in 
the steel industry.  A second advan tage  of  regenerators  
occurs at  more  modes t  t empera tures  where dir ty or 
corrosive gases are used. It  is s t ra ight forward  to allow 
for cleaning of  the heat  t ransfer  surface of  a regen- 

FLue gas Combust ion  air 

(a) 
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FIC. 1. Schematic diagram of two designs of rotary regen- 
erative heat exchangers : (a) Ljungstrom desigm fixed ducts, 
rotating drum; (b) Rothemuhle design, stationary drum, 

rotating headers. 

erator ,  e.g. by high-pressure air or s team jets, while 
ma in ta in ing  a compac t  design of  heat  exchanger.  

F r o m  the above,  it is clear tha t  a regenera tor  always 
operates  in a t ransient  mode,  in cont ras t  with a 
recuperator ,  for  which a genuine steady state is pos- 
sible. Unde r  steady operat ing condit ions a regenerator  
will achieve a quasi-s teady state in which the tem- 
pera ture  oscillations are the same f rom one cycle to 
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NOMENCLATURE 

A time averaged air temperature 
a amplitude of air temperature oscillation 
B constant 
b constant 
C heat capacity of metal per unit volume 
cp specific heat of fluid 
E exp ( f )  
F vector of fundamental solutions 
J exponent in recuperator solution 
G time averaged gas temperature 
9 amplitude of gas temperature oscillation 
H metal surface area per unit volume 
h heat transfer coefficient 
k ratio of gas and air reduced lengths 
l length of channel 
M time averaged metal temperature during gas 

cycle 
m amplitude of metal temperature oscillation 

during gas cycle 
N time averaged metal temperature during air 

cycle 
n amplitude of metal temperature oscillation 

during air cycle 
T temperature 
t time 
t a period of air cycle 
tg period of gas cycle 
u dimensionless temperature 
W mass flow of fluid per unit approach area 
x length 

y dimensionless length 
z position of change in element type. 

Greek 

A 

P 

symbols 
exponent in general solution 
parameter describing degree of unbalance 
small parameter 
reduced length 
coefficient of quadratic term in metal 
temperature during gas cycle 
coefficient of quadratic term in metal 
temperature during air cycle 
reduced period 
dimensionless time 
weight function for the heat balance 
integral method. 

Subscripts 
a air cycle 
c coldest value reached during a complete 

cycle 
g gas cycle 
h hottest value reached during a complete 

cycle 
i inlet 
j index denoting fundamental solutions 
m metal 
n index denoting region 
o outlet. 

the next. The thermal performance of the regenerator 
can be described in terms of the time averaged outlet 
temperatures of the air and gas streams. This problem 
has been considered by Hausen [1], who showed that 
the fluid outlet temperatures can be determined by 
considering an equivalent recuperator. Hausen's 
analysis showed how the heat transfer coefficients in 
the recuperator can be related to those in the regen- 
erator in order that the fluid outlet temperatures 
are the same. 

For other aspects of regenerator performance it is 
necessary to consider the solution in more detail. For 
a fixed bed regenerator the temperature swings at 
outlet from the regenerator can be important, while 
for a rotary regenerator the fluid temperature swings 
can lead to stratification in the fluid outlet ducts. The 
amount by which the heat exchange drum of a rotary 
regenerator will distort depends on the variation of 
the solid temperature through the regenerator. A 
knowledge of the thermal distortion is necessary to 
provide effective sealing between the stationary and 
moving parts of the regenerator. The corrosion and 
fouling of any section of the heat exchange elements 
will depend on the variation of the local fluid and 
solid temperatures [2]. 

In the following sections a simple approximate ana- 
lytic method is developed for the solution of the quasi- 
steady state problem under the condition that dimen- 
sionless parameters known as the reduced periods are 
not much larger than two. This criterion is made more 
precise in the subsequent work. The method also 
requires the reduced length of the regenerator to be 
at least as large as the reduced period, however, there 
is no upper limit on the reduced length. These restric- 
tions are shown to be satisfied for a selection of power 
station rotary generators. The solution gives the time 
averaged fluid and solid matrix temperatures at any 
point in the regenerator, and also predicts the fluid 
and solid temperature oscillations throughout the 
depth of the regenerator. 

2. THE REGENERATOR EQUATIONS 

A counterflow regenerative heat exchanger is con- 
sidered under quasi-steady operating conditions. The 
fluids which are hot and cold at the inlet will be 
referred to as gas and air, respectively, their tem- 
peratures and physical properties are referred to with 
subscripts g and a, respectively. During the gas phase 
(-- tg < t < 0), the fluid and metal temperatures 
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(which are denoted by a subscript m) satisfy the equa- 
tions [3] 

ar~/~x = -(hgI4/Wgc~g)(rg- rm) (1) 

and 

aTm/& = (hgH/C)(Tg-- Tin) (2) 

where x denotes the distance from the gas inlet, T the 
temperature (with Tm the matrix temperature) and h, 
H, W, cp and C the heat transfer coefficient, the metal 
surface area per unit matrix volume, the mass flow of 
fluid per unit approach area, the specific heat of the 
fluid and the heat capacity of the metal per unit matrix 
volume. 

Equations (1) and (2) ignore the effects of heat 
conduction in the elements parallel to the direction of 
the fluid flow, the heat capacity of the fluid resident 
in the regenerator, and the difference between the 
average temperature and the surface temperature of 
the elements, all of which can be shown to be very 
small for a power station air heater. 

Equations (1) and (2) can readily be made dimen- 
sionless by setting 

U = ( T - -  T a i ) / ( T g  i - -  Tai ) (3 )  

where Tg~ and Ta~ are the gas and air inlet tempera- 
tures, and setting y = x/l where l is the length of the 
channel and z = t/tg to give 

aug/@ = - Ag (Ug -Um ) (4) 

G/,/m/aT = 7~g(b/g--b/m) (5 )  

where the dimensionless constants Ag = (hgHl/WgCpg) 
and rCg = (hgHtg/C) are exactly equivalent to the con- 
stants A and rc used by Hausen. These constants are 
generally referred to as reduced length and reduced 
period, respectively. Equations (4) and (5) apply for 
0 < y < l  a n d - I  < r < 0 .  In a similar way one can 
obtain dimensionless equations for the air phase. For 
these equations y = x/l and z = tit a are set to give 

aUa/ay = A a ( u a - - U r n )  (6 )  

aura~& = ~,(Ua--Um) (7) 

for0 < y  < 1 , 0 < r <  1. 
The appropriate boundary conditions are 

Ug= 1 a t y = 0 f o r - 1  < z < 0  (8) 

and 

u ~ = 0  a t y =  1 f o r 0 < z <  1. (9) 

Finally, conditions are required to describe the quasi- 
steady, periodic operation of the regenerator. These 
are 

Um continuous across z = 0 

and f o r 0 < y <  1 (10) 

Um (*  = - -  1)  = U m  (~ = 1) .  

To date two types of method have been developed 
to solve this problem. The problem can be solved 

numerically as an initial value problem and the solu- 
tion continued until the periodicity conditions (equa- 
tions (10)) are approximately satisfied [4]. Alter- 
natively, Iliffe [5] and Nahavandi and Weinstein [6] 
solved the steady, periodic problem in terms of the 
solution to an integral equation. 

The steady periodic problem has also been solved 
by Hill and Willmott [7] who used the method of lines 
to reduce the problem to a system of typically 20 or 
30 ordinary differential equations in time. In Section 
3 a simpler method is developed for the solution by 
approximating the time variation of temperature at 
any point as a polynomial. This method applies only 
to regenerators with a reduced period of ~z = 2 or 
less, a condition which is satisfied by the rotary air 
preheaters installed in power station boilers. 
However, there are no difficulties with the method 
if the reduced length of the regenerator is large, a 
condition which does lead to difficulties with some of 
the above methods. 

3. FORMULATION OF THE M E T H O D  

A technique which can be applied to obtain 
approximate analytic solutions to heat conduction 
problems is the heat balance integral method [8, 9]. A 
typical heat conduction problem may consist of a 
differential equation 

L(u) = 0 (1 l) 

which applies for 0 < y <  1, z > 0  together with 
appropriate boundary conditions. A function v is 
accepted as an approximate solution of the heat con- 
duction problem if it satisfies the boundary conditions 
together with a weaker form of equation (11), namely 

~o' L(f'))~(y)dy = 0 (12) 

for some sequence of functions 

z j ; J  = 1,2 . . . . .  J. (13) 

The method provides no mechanism for estimating 
the accuracy of an approximate solution other than 
by comparing it with an exact or numerical solution 
to the problem. However, providing care is taken in 
choosing the form of the approximate solution, the 
method provides useful results. 

A similar technique will be applied to obtain an 
approximate solution to the regenerator problem, 
except that for this problem it is convenient to inte- 
grate the differential equations with respect to time 
rather than distance. Hence instead of solving equa- 
tion (4) an approximate solution will be accepted 
which satisfies 

f') (attg/g.F4-Ag(ug-Um)))~i('r:)d'c = 0 (14) 
1 

for j = 1,2 . . . . .  J. The weak or integrated forms of 
equations (5)-(7) follow in a similar way. The 
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approximate solution will be chosen so that the tem- 
perature distributions are polynomials in z at any 
point along the length of the regenerator, i.e. the tem- 
perature is written as polynomials in the dimensionless 
time r, the coefficients of which are functions of y. 
Because of the time derivative in equations (5) and 
(7) the polynomials for Um are required to be one 
degree higher than those for Ug and Ua. If attention is 
restricted to cases where the reduced periods ~g and 
na are not too large and the ratios n/A are not larger 
than 1, the exact variation of temperature with time 
will have a 'sawtooth' pattern which can be reasonably 
well approximated by low-order polynomials. If Um is 
approximated by a quadratic function of • in each 
period and Ug and Ua by linear functions of ~, one can 
write 

Ug ~- G(y) + g(y)(~ + ½) (15) 

um ~- M(y) +rn(y)(z + ½) + ½/2(y){(z + ½)2 _ 1/12} 

(16) 

f o r O < y <  1 , - 1  < r < O ,  and 

u~ ~-- A(y) +a(y)(½ --z) (17) 

Um ~ N(y)+n(y)(½--z)+ ½v(y){(~--T) 2-1/12} (18) 

for0 < y  < 1 , 0 < x <  1. 
The equations to be satisfied by the unknown func- 

tions G, g, etc., will come from the weak form of the 
Nusselt equations, such as equation (14). With the 
choice 

;~1('c) = 1 

four equations are obtained 

Gfi?y = -- Ag (G -- M) (19) 

OA/~y = Aa(A-- N) (20) 

m = rig(G--M) (21) 

n = -- na (A -- N). (22) 

A further four equations can be obtained with the 
choice 

~2(~) = 

~g/Oy = - A g ( g - m )  (23) 

Oa/Oy = A, ( a -  n) (24) 

/2 = 7 Z g ( g - - m )  (25) 

v = -- na (a-- n) (26) 

(using equations (19)-(22)). The periodicity equations 
(10) give 

m = n (27) 

and 

M+rtg(g--m)/12 = N--ha(a--n)/12. (28) 

The boundary conditions become simply 

G =  1 , 9 = 0  a t y = 0  

ATTHEY 

A = a = 0  a t y =  1. (29)  

Equations (19) (28) form a system often equations 
for the ten unknown functions ofy in the approximate 
solution (equations (15)-(18)), hence with this form 
of approximate solution it is appropriate to take 
J = 2. It would be possible to introduce further terms 
into the approximate solution and to take a larger 
value for J. However, since the above solution will be 
shown to give a good approximation to all the features 
of interest of the problem this has not been done. 

4. RESULTS OF THE M E T H O D  

Equations (19)-(28) can be regarded as a fourth- 
order system of differential equations subject to the 
four boundary conditions (29). As the system is linear, 
it is appropriate to obtain the solution in terms of 
superposition of four fundamental solutions which 
are derived in the Appendix. In the solution the 
parameter 

g = Ag~caT~g/12(A a + A g )  (30) 

is regarded as small and all terms in e2 are ignored. 
This is consistent with the assumption of the form 
of the time variation of u, and it should be a good 
approximation for ~a and ~g < 2. 

For convenience the sequence {G, A, M, N, g, a, m} 
is denoted by F. Writing the four fundamental solu- 
tions as Fj for j = 1, 2, 3 and 4, the general solution 
of equations (19)-(28) is 

= ~ bjE. (31) 
j -  I 

Use of boundary conditions (29) yields a system of 
four linear equations for the coefficients bj. In general 
the solution of these linear equations is numerical, 
however, for cases where the dimensionless lengths 
are sufficiently large for e Ag and e A to be neglected 
an analytic solution becomes practical. For this latter 
case the dimensionless outlet temperatures are as 
given below. 

4.1. Balanced regenerator 
A regenerator is defined to be balanced if 

Ag/TCg = Aa/7~ a. In this case the time average of the 
dimensionless air outlet temperature is A (0), i.e. the 
second element of F evaluated at y = 0, which is 

A(0) = (Ag-Ze)/(l + k + A g - 2 e )  (32) 

where 

k = A g / A  a. (33) 

Similarly the time averaged gas outlet temperature is 

G(1) = (1 +k)/( l  + k + A g - 2 e ) .  (34) 

It is of interest to note that the limits of these terms 
as e, ~ 0 are the outlet temperatures for a continuously 
acting recuperator. For details of the analysis of a 
recuperator see, e.g. Kays and London [10]. The 
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dimensionless air and gas outlet temperature swings 
can be seen from equations (15) and (17) to be a(0) 
and g(l), respectively. These take the values 

a(0) = g(1) = g g ( 1  --e/(1 +k)) /( l  + k + A g - 2 S ) .  (35) 

4.2. Unbalanced regenerator 
The mean air outlet temperature is 

A(0) = { ( E -  1)(Ag + f ) - - e f ( E / [ 3 +  1)}/ 

{(E-[~)(Ag+.f)--ef(E/[t+~)} (36) 

where 

and 

/ =  (Ajrg - AFz.) / (rig + ~z~) (37) 

E = e ! (38) 

p = Ag~z~/Aagg. (39) 

The air outlet temperature swing is 

a(0)  ~ gg.f{  1 -- ; ; f l / ( l  +k)}/  

{(E-fl)(Ag+ f)--ef(E/fi+fl)}. (40) 

The mean gas outlet temperature is 

G(1) = E{(1 -/~)(Ag + f )  -~f(l/fl-- 1)}/ 

{(E-/3)(Ag+ f)--~f(E/fl+fl)} (41) 

and the gas outlet temperature swing is 

g(1) -~ ~gEf{fi-~:/(1 +k)}/  

{(E-fl)(Ag+ f)-sf(E/~+fl)}. (42) 

Other qualities of interest, e.g. the variation of metal 
temperature, can be determined from the detailed 
solution in the Appendix. 

5. REGENERATOR WITH TWO SETS OF HEAT 
EXCHANGE ELEMENTS 

The heat exchange elements for a power station 
regenerative air heater will ideally provide high ther- 
mal performance and a low susceptibility to fouling 
and corrosion. In a number of air heaters it has been 
found advantageous to have two completely different 
designs of element to cope with the varying conditions 
throughout the heater. Over most of the depth the 
regenerator is fitted with elements of high thermal 
performance, but close to the air inlet end, where the 
lowest temperatures occur, the elements are chosen to 
have a low susceptibility to fouling, which generally 
means that the thermal performance is lower. In 
consequence the values of A and ~ will be different 
for the two elements. 

For high-temperature applications of regenerators 
the fluid properties vary strongly with temperature, 
especially if radiative heat transfer becomes signifi- 
cant. One approximation which is used is to split the 
regenerator into a number of zones and to take the 
fluid properties appropriate to a representative tem- 
perature in each zone. The following is directly appli- 

cable to a two-zone approximation for a regenerator, 
and the generalization to three or more zones is 
straightforward. 

In each of the two regions of the regenerator the 
temperatures will be approximated by equations of 
the form of equations (15)-(18). In each region the 
functions G, 9, A, a, etc. will satisfy equations of the 
form of equations (19)-(28), and the fundamental 
solutions will be of the form given in the Appendix 
with the constants Ag, Aa, ~g and rt a taking the appro- 
priate values in each region. The solution will take the 
form 

and 

F =  ~ bjFj 0 < y < z  (43) 
j - - I  

4 
F = ~ b4+/F j 2 < y < 1 (44) 

j = l  

where the interface between the two regions is y = z. 
At the interface between the two elements or zones 

it is clear that the gas and air temperatures must be 
continuous at all times, so that G, 9, A and a are 
continuous functions of y at y = z. It is not appro- 
priate to impose any condition of continuity on the 
solid temperature as axial heat conduction along the 
solid has been ignored. In practice in a rotary regen- 
erator with two sets of elements, the upper and lower 
elements are separated by a small gap, so that even 
if axial heat conduction was included in the model, 
conditions of continuity of the element temperature 
at the interface would not be imposed. 

Use of the four boundary conditions (29) and the 
four interface conditions 

G, g, A,a, continuous at y = z (45) 

give a system of eight linear equations from which the 
eight constants bj in equations (43) and (44) may be 
determined. In this case an analytic solution of the 
equations is not practical, and the equations are 
solved numerically. 

6. D ISCUSSION 

One can investigate the effect of the approximations 
made in the solution of equations (1) and (2) by 
comparing the solution with numerical results from a 
finite difference scheme. The finite difference method 
used was developed by Donovan (private com- 
munication) and is similar in form to that described 
by Willmott [4]. There are two approximations made 
in obtaining an analytic solution to the problem, 
which are that the time variation of the actual tem- 
perature distribution should be similar to the assumed 
form (equations (15)-(18)) and that the parameter 
e. is small compared with unity. Both of these are 
reasonable approximations provided the reduced per- 
iods rta and ~g are not too large and that ~z, and ~zg 
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Table 1. Comparison of methods for a two-element case (all temperatures dimensionless) 

Heat balance Finite difference Finite difference 
method 80 x 80 40 x 40 Hausen 

Gas inlet end 
Mean air temperature 0.7608 0.7616 0.7604 0.7647 
Metal temperatures : 

mean 0.8925 0.8918 0.8902 0.8945 
hottest 0.9494 0.9482 0.9463 0.9608 
coldest 0.8212 0.8208 0.8188 0.8282 

x = 0.65l 
Mean gas temperature 0.5310 0.5314 0.5294 
Mean air temperature 0.1871 0.1886 0.1859 
Metal temperatures : 

mean 0.3765 0.3776 0.3753 
hottest 0.4749 0.4757 0.4737 
coldest 0.2890 0.2890 0.2863 

x = 0.71 
Mean gas temperature 0.5035 0.5031 0.5043 
Mean air temperature 0.1533 0.1533 0.1537 
Metal temperatures : 

mean 0.3533 0.3533 0.3537 
hottest 0.3769 0.3769 0.3773 
coldest 0.3333 0.3337 0.3333 

Air inlet end 
Mean gas temperature 0.3780 0.3776 0.3784 0.3733 
Metal temperatures : 

mean 0.2157 0.2161 0.2169 0.2133 
hottest 0.2404 0.2404 0.2412 0.2361 
coldest 0.1937 0.1941 0.1945 0.1906 

Parameters : 

Agl = 5.739, Aal = 5.702, Ag2 = 2.673, Aa2 = 2.454 

ngl = 1.267, 7~al = 1.029, n~2 = 0.288, ~,2 = 0.216 

~1 = 0.053, e~ = 0.003 

Change in element characteristics at x = 0.666• 

are no larger t han  2 and  no  larger than  Aa or  Ag, 
respectively. 

In Tables  1 and  2 the results ob ta ined  by the present  
heat  ba lance  m e t h o d  are compared  with finite differ- 
ence results using da ta  f rom two power  s ta t ion regen- 
erative air heaters.  The  heater  represented in Table  1 
has ho t  and  cold elements  with  different charac-  
teristics, and  its dimensionless  lengths and  periods are 
typical of  those f rom air heaters  in opera t ion  in the 
CEGB.  Table  2 represents  an  air  heater  with a com- 
b ina t ion  of  h igh-per formance  elements and  a slow 
speed of  rota t ion,  which result  in larger values of  n. 

In the tables da ta  is given f rom the finite difference 
me thod  using two values for the step lengths of  the 
space and  t ime variables. The  t runca t ion  er ror  can be 
es t imated by compar ing  the results with  two different 
step lengths. It  is seen tha t  the heat  ba lance  me thod  
differs f rom the fine mesh finite difference results by 
up to 2 x 10 3, which is slightly less t han  the est imate 
of  t runca t ion  error.  Fo r  the da ta  in Table  2, which is 
slightly outside the range of  n for which the me thod  
is expected to be accurate,  the difference between the 
heat  ba lance  m e t h o d  and  the finite difference results 

is a r o u n d  10 -2 , which is abou t  twice the est imate of  
t runca t ion  error. 

The Hausen  me thod  referred to earlier reformulates  
the regenera tor  as a recupera tor  with a slightly modi-  
fied length. Strictly speaking the me thod  only applies 
to a heat  exchanger  fitted with a single element type, 
a l though  in principle it could be modified for the two- 
element  case. A n  al ternat ive app roach  to apply the 
Hausen  me thod  to a heater  with two element types is 
to use the s tandard  Hausen  correct ion term, but  with 
suitably defined overall  values for the reduced length 
and  period. This  app roach  was used to obta in  the 
da ta  in the final co lumn of  Tables 1 and  2. Hausen ' s  
me thod  only gives a direct est imate of  the t ime aver- 
aged fluid and  metal  temperatures .  However,  it is pos- 
sible to use these to estimate the heat transfer from the 
fluids to the metal  and  hence to est imate the t ime 
var ia t ion  of  metal  temperature.  This is done in the 
final co lumn of  Tables 1 and  2. Note  tha t  the est imate 
of  the t ime averaged metal  and  fluid tempera tures  
obta ined  f rom the Hausen  me thod  are slightly in 
error,  whereas  the estimates of  the t ime var ia t ion  of  
the metal  tempera tures  are not iceably worse. 
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Table 2. Comparison of methods for an extreme two-element case (all temperatures dimensionless) 
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Heat balance Finite difference Finite difference 
method 80 x 80 40 x 40 Hausen 

Gas inlet end 
Air temperature : 

mean 
hottest 
coldest 

Metal temperatures 
mean 
hottest 
coldest 

x = 0.51 
Gas temperature : 

mean 
hottest 
coldest 

Air temperature : 
mean 
hottest 
coldest 

Metal temperatures 
mean 
hottest 
coldest 

0.8888 0.8895 0.8881 
0.9554 0.9505 0.9474 
0.8233 0.8177 0.8167 

0.8926 

0.9488 0.9484 0.9467 0.9512 
0.9899 0.9902 0.9888 1.0136 
0.8871 0.880l 0.8791 0.8888 

0.7152 0.7163 0.7145 
0.8149 0.8079 0.8066 
0.6155 0.6107 0.6075 

0.5249 0.5270 0.5249 
0.6480 0.6431 0.6375 
0.4019 0.4123 0.4106 

0.6288 0.6267 0.6284 0.6267 
0.7365 0.7372 0.7358 0.7365 
0.5120 0.5155 0.5131 0.5204 

Air inlet end 
Gas temperature : 

mean 0.3043 0.3036 0.3039 0.3032 
hottest 0.3876 0.3911 0.3900 
coldest 0.2210 0.2220 0.2252 

Metal temperature : 
mean 0.1680 0.1687 0.1694 0.1677 
hottest 0.2259 0.2262 0.2266 0.2192 
coldest 0.1199 0.1206 0.1216 0.1161 

Ag~ = 8.947, Aal = 9.511, Ag2 = 5.569, A,2 = 5.764 

ngl = 2.632, n~l = 2.190, rig2 = 0.784, ha2 = 0.635 

el = 0.233, e2 = 0.020 

Change in element characteristics at x = 0.84• 

Parameters : 

In Table 3 the method  is used to estimate the effec- 
tiveness, i.e. the dimensionless air outlet temperature  
of  balanced symmetric regenerators with a single 
element type with dimensionless length A in the range 
1 10 and dimensionless periods 7z of  1, 2 and 3. The 
results are compared  with results presented in Schmidt  
and Willmott  [3], computed  by the method  o f  
Willmott  [4]. It is seen that  there is good agreement  
for n = 1 and 2 apart  f rom the case A = 1, n = 2. For  
n = 3 the agreement is good for larger values of  A but 
becomes poor  for A = 3 or less. This is in line with 
the limitations of  the method,  since the assumed form 
of  the temperature distr ibution will not  be a good 
approximat ion if A < n, and the parameter  e cannot  
be regarded as small if ~ > 2. 

In Tables 4 and 5 the me thod  is used to predict  the 
dimensionless metal and gas temperatures  at the start 
and end of  the gas cycle for long balanced symmetric 
regenerators.  These cases have also been considered 
by Hill and Willmott  [7]. Their  results are not  pre- 

sented here, however the maximum difference between 
the temperatures  predicted by the two methods  is 
10 4. 

Finally in Table 6, some cases considered by Naha-  
vandi and Weinstein [6] are presented. The predicted 
effectiveness (i.e. the dimensionless air outlet tem- 
perature) is compared  with the generally accepted 
value for the effectiveness as given for example by Hill 
and Willmott  [7]. It is seen that  only the first four 
cases presented here satisfy the constraints  of  the 
method,  i.e. A/> n and n ~< 2. For  these four cases the 
agreement  is good. For  the remainder  of  the cases 
considered by Nahavandi  and Weinstein the heat bal- 
ance method gives poor  or even nonsensical results 
with the predicted effectiveness sometimes outside the 
range [0, 1]. These latter cases, o f  which four are pre- 
sented in Table 6, are intended as a demonst ra t ion  
that  the heat balance me thod  should not  be used out- 
side the parameter  range for which it was developed. 

The C P U  time used to generate all the heat balance 
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Table 3. Values of the effectiveness for balanced symmetric 
regenerators as computed by the heat balance method. 
Values from Schmidt and Willmott [3] are given in par- 

entheses for comparison 

Reduced period, 7z 
Reduced length, A 1 2 3 

1 0.3215 0.2846 0.2177 
(0.3221) ( 0 . 2 9 3 0 )  (0.2559) 

2 0.4909 0.4616 0.4061 
(0.4912) (0.4664) (0.4305) 

3 0.5936 0.5731 0.5342 
(0.5937) ( 0 . 5 7 5 7 )  (0.5477) 

4 0.6621 0.6475 0.6202 
(0.6622) ( 0 . 6 4 9 0 )  (0.6282) 

5 0.7109 0.7001 0.6803 
(0.7109) ( 0 . 7 0 1 2 )  (0.6856) 

6 0.7474 0.7392 0.7242 
(0.7474) ( 0 . 7 4 0 0 )  (0.7280) 

7 0.7757 0.7692 0.7576 
(0.7758) ( 0 . 7 6 9 9 )  (0.7605) 

8 0.7983 0.7931 0.7838 
(0.7984) ( 0 . 7 9 3 6 )  (0.7861) 

9 0.8168 0.8125 0.8049 
(0.8169) ( 0 . 8 1 2 9 )  (0.8068) 

10 0.8322 0.8286 0.8222 
(0.8322) ( 0 . 8 2 8 9 )  (0.8238) 

results used in the tables was 0.11 s on an Amdahl  
5870 mainframe computer  or 25 s on an Olivetti M24 
personal computer.  For  comparison an open finite 
difference method  similar to the Willmott method [4] 
used 20 gridpoints and 20 time steps for each period 
for a typical case, and took 23 cycles to reach equi- 
librium. The corresponding C P U  times were 0.47 s on 
the Amdahl  and 115 s on the Olivetti for this one case. 

7. CONCLUSIONS 

The steady-state temperature distribution in a 
regenerator has been determined by an approximate 
analytic method  based on the heat balance method.  
The solution has been shown to be a good approxi- 
mat ion to the temperature distribution in rotary 
regenerators in power station boilers. The method is 
restricted to cases where the reduced periods are not 
too large, however, there is no restriction on the 
reduced lengths. A novel feature of  the method is that 
it can readily cope with a number  of  regenerators in 
series. This has applications to power station air heat- 
ers where different heat exchange elements are usually 
fitted in the hot and cold zones of  the heater. Another  

Table 4. Values of the dimensionless metal temperature at the start and end of the gas cycle for long 
balanced symmetric regenerators with n = 0.1 

Dimensionless metal temperature at Dimensionless metal temperature at 
start of gas cycle end of gas cycle 

A =  100 A = 2 5 0  A = 5 0 0  A =  100 A = 2 5 0  A=500  

0 0.9897 0.9958 0.9974 0.9907 0.9962 0.9981 
0.1 0.8917 0.8966 0.8983 0.8927 0.8970 0.8985 
0.2 0.7936 0.7974 0.7987 0.7946 0.7978 0.7989 
0.3 0.6956 0.6982 0.6991 0.6966 0.6986 0.6993 
0.4 0.5976 0.5990 0.5995 0.5985 0.5994 0.5997 
0.5 0.4995 0.4998 0.4999 0.5005 0.5002 0.5001 
0.6 0.4015 0.4006 0.4003 0.4025 0.4010 0.4005 
0.7 0.3034 0.3014 0.3007 0.3044 0.3018 0.3009 
0.8 0.2054 0.2022 0.2011 0.2064 0.2026 0.2013 
0.9 0.1074 0.1030 0.1015 0.1083 0.1034 0.1017 
1.0 0.0093 0.0038 0.0019 0.0103 0.0042 0.0021 

Table 5. Values of the dimensionless gas temperature at the start and end of the gas cycle for long balanced 
symmetric regenerators with n = 0.1 

Dimensionless gas temperature at Dimensionless gas temperature at 
start of gas cycle end of gas cycle 

A =  100 A = 2 5 0  A = 5 0 0  A =  100 A = 2 5 0  A = 5 0 0  

0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 
0.1 0.9015 0.9006 0.9003 0.9025 0.9010 0.9005 
0.2 0.8034 0.8014 0.8007 0.8044 0.8018 0.8009 
0.3 0.7054 0.7022 0.7011 0.7064 0.7026 0.7013 
0.4 0.6074 0.6030 0.6015 0.6083 0.6034 0.6017 
0.5 0.5093 0.5038 0.5019 0.5103 0.5042 0.5021 
0.6 0.4113 0.4047 0.4023 0.4123 0.4050 0.4025 
0.7 0.3132 0.3054 0.3027 0.3142 0.3058 0.3029 
0.8 0.2152 0.2062 0.2031 0.2162 0.2066 0.2033 
0.9 0.1172 0.1069 0.1035 0.1181 0.1073 0.1037 
1.0 0.0191 0.0077 0.0039 0.0201 0.0081 0.0041 
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Table 6. Values of  the effectiveness for unbalanced asym- 
metric regenerators (only the first four cases are within the 

range of  validity of  the heat balance method) 

Effectiveness 
Effectiveness (Hill and 

Ag A~, ng n~, (heat balance) Willmott) 

1.4 2.0 1.0 1.0 0.5266 0.5271 
2.8 4.0 2.0 2.0 0.7062 0.7087 
1.0 2.0 1.0 1.0 0.5510 0.5516 
2.0 4.0 2.0 2.0 0.7425 0.7462 
4.0 8.0 4.0 4.0 0.8761 0.8929 
8.0 16.0 8.0 8.0 1.0730 0.9717 
0.2 2.0 2.0 2.0 0.5233 0.5535 
0.8 8.0 8.0 8.0 1.0110 0.8010 

a p p l i c a t i o n  is to h i g h - t e m p e r a t u r e  r e g e n e r a t o r s  w h e r e  

it is c o n v e n i e n t  to a p p r o x i m a t e  t he  t e m p e r a t u r e  var i -  

a t i o n  o f  the  f luid p rope r t i e s  by  sp l i t t ing  the  r egen -  

e r a t o r  in to  a n u m b e r  o f  zones ,  in e ach  o f  w h i c h  the  

fluid p rope r t i e s  a re  a s s u m e d  to  be  c o n s t a n t .  

Acknowledyement--This paper is published by permission of  
the Central Electricity Generating Board. 
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APPENDIX  

Equations (19)-(28) form a fourth-order system of  differ- 
ential equations which are subject to the four boundary 
conditions (29). For convenience a solution of  the system is 
denoted by the sequence 

F -  { G , A , M , N , g , a , m } .  (A1) 

Solutions to the system can be obtained by assuming that F 
has the form Ce ~'. Equations (19)-(27) are satisfied by 

V - {1, 1, 1, 1,0,0,0} (A2) 

which corresponds to c~ = 0, and by 

F = {A t /nt ,  Aa/na, (A t + ot)/ng, (A, -- c¢)/na, 

-AgC~/(Ag+c¢), -AaCq(Aa-C0,  - e }  e ~'' (A3) 

for any value of  a, while equation (28) gives 

{A~,n~ - A~n. - (n t + n~, )~} 
9 x~(A~-~) (A t+e) - -e -n~ng /12  } = 0  (A4) 

which is satisfied by a = J .  where 

f = (AaTrg -- AgTZ a)/(/~g 4- rt a ) (A5) 

or by 

(A~ - :0(Ag +c0 = ~tzn~ng/12. (A6) 

One can now set 

= Atntn  ~ / 12(Ag + Aa) (A7) 

and restrict attention to problems where ~ is small and ignore 
terms in e2. Note that this is consistent with the assumption 
of  the time variation of  u, and it should be a good approxi- 
mation for n, and ng < 2. Equation (A6) is approximately 
satisfied by 

= As+Age, (A8) 

and 

where 

o~ = A a - Aa~/k (A9) 

k = Ag/A~. (AI0) 

It is now convenient to consider separately the cases of  a 
balanced regenerator, i.e. a regenerator for which f - 0 ,  and 
an unbalanced regenerator. 

Balanced regenerator 
For this case there is a repeated root c~ = 0 and instead 

one has a solution which is linear in y. Two fundamental  
solutions are then 

F, - {1, 1, 1, 1 ,0 ,0 ,0}  ( A l l )  

F2 = {l + k - A g y ,  - A j ,  k - A g y ,  k - A g y ,  ng, ng. ng}. 

(AI2) 

Substituting equations (A8) and (A9) into equation (A2) 
and retaining only the highest term in e, throughout  one 
obtains two other fundamental  solutions as 

F 3 = {g,,e,O,£(1A-k),rEg, erCg/(14-k),~Trt} e A (AI3) 

F4 = { --~, --e, --e(1 +k)/k ,  O, 137rg/(l q-k), 

71"g,~;~g/k} eA, ~'- I~. (AI4) 

The general solution of  equations (19)-(28) is given by 

F =  i b ,  F~ (AI5) 
d 

i = 1  

and boundary conditions (29) give a system of  four linear 
equations from which the constants  b~ can be determined. In 
general a numerical evaluation of  the constants  bi is appro- 
priate, however if the dimensionless lengths Ag and A~ are 
large enough for the terms exp ( - A , )  and exp ( - A g )  to be 
neglected, the equations simplify considerably. In this case 
the solution is 

F = {(A~-e)F ,  + F 2 - F 3 - F 4 } / ( I  + k + A g - 2 ~ : ) .  
(A16) 

The time outlet temperatures and temperature swings, equa- 
tions (32), (34) and (35), follow immediately by substitution. 

Unbalanced regenerator 
For an unbalanced regenerator, the quantity f given by 

equation (A4) is nonzero. The following notation is intro- 
duced : 

E = e I and fl = AgnjA,ng .  (A17) 
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Four fundamental solutions to equations (19)-(28) are 

F~ = {1, 1, 1, 1,0,0,0} (A18) 

F 2 = (/~, 1, g.(A. +Ag)/Aa(g a +~g), n.(A. + Ag)/A.(g~ +gg), 

- f lngf /(Ag+ f ) , -Trg f / (Ag+ f ) , - n ~ f / A a }  (A19) 

F 3 = {e, e//3, 0, e(1 + k)/fl, gg, egg/( 1 + k), egg } e-A8 y. (A20) 

F4 = { --~, --elfl, --e(1 +k)/k, O, ens/(1 +k), gg, 

egg~k} e A,(y- o. (A21) 

As before the general solution is given by equation (A 15), 
and a numerical solution of the resulting linear equations is 
required, except for the case where A a and Ag are large enough 
for the exponential terms including them to be neglected. In 
this case the solution is 

F = {E(Ag + f -  ef/fl)F~ - (A~ + f)F2 - tifF3 - EfF4 } / 

{(E--l~)(Ag+ f ) - -e f ( f l+E/ f l )} .  (A22) 

Once again the outlet temperatures and temperature swings, 
equations (36) and (40) (42), follow by substitution. 

ANALYSE THERMIQUE APPROCHEE D'UN ECHANGEUR DE CHALEUR 
REGENERATEUR 

R6sum6---On d6crit une analyse thermique approch6e d'un r6g~n6rateur thermique. L'approximation 
repose sur le fait que les param6tres adimensionnels, tels que les p6riodes r6duites, ne sont pas grands, 
condition qui est pr6cis6e et qui est r6alis6e pour tousles r6chauffeurs d'air. La m&hode donne les 
temp6ratures moyennes dans le temps fi la sortie, qui sont 6quivalentes fi celle d6duites d'une analyse de 
Hausen (Verfahrenstecknik Z. Ver. Dr. In#. 2, 31-43 (1942)). La m6thode pr6dit aussi la variation des 
temp6ratures du fluide et des 616ments de l'6changeur avec la position et le temps. La m&hode est g6n6ralis6e 
pour couvrir le cas d'un r6g6n6rateur avec deux zones ou plus ayant des coefficients de transfert thermique 
diff6rents. Cela s'applique ~ des r6chauffeurs d'air off des 616ments d'6changeur cliff, rents sont fr6quemment 
utilis6s dans les zones chaudes et froides du r6chauffeur, et ~ des r6g~n6rateurs fi haute temp6rature off la 
variation des propri6t6s du fluide avec la temp6rature peut ~tre approch6e en s6parant le r6g6n6rateur en 
plusieurs zones dans chacune desquelles les propri6t6s sont constantes. Les r6sultats sont compares avec 
la solution par diff6rences finies. L'aptitude de la m6thode est d6montr6e pour des r6g6n6rateurs longs et 
les r6sultats sont compar6s avec la solution de Hausen et avec les r6sultats classiques donn6s dans les 

publications. 

EINE THERMISCHE NAHERUNGSANALYSE F ~ R  EINEN 
REGENERATIVW,~RMETAUSCHER 

Zusammenfassung--Der Aufsatz beschreibt eine Nfiherungsanalyse fiir einen regenerativen Wfirme- 
tauscher. Das Nfiherungsverfahren beruht auf der Tatsache, dab die dimensionslosen Parameter, auch als 
reduzierte Periodendauer bekannt, nicht zu groBe Werte annehmen. Diese fiir alle Kraftwerks-Lufterhitzer 
zutreffende Bedingung wird in dem Aufsatz n~iher erliiutert. Fiir die Gr6Be der dimensionslosen L~ingen 
gibt es keine Einschrfinkung. Das Verfahren liefert zeitlich gemittelte Austrittstemperaturen, welche mit 
den von Hausen (Verfahrenstecknik Z. Vet. Dr. In#. 2, 31-43 (1942)) bei der Analyse eines fiquivalenten 
Rekuperators gefundenen Werten iibereinstimmen. Weiterhin wird die h.nderung der Fluidtemperatur 
und der Temperatur der W~irmeiibertragungselemente in Abh~ingigkeit von Zeit und Ort bestimmt. Das 
Verfahren gilt fiir den allgemeinen Fall eines Regenerators mit zwei oder mehr Abschnitten, von denen 
jeder unterschiedliche Wfirmeiibergangskoeffizienten haben kann. Dieser Fall kommt in regenerativen 
Kraftwerks-Lufterhitzern vor, bei denen unterschiedliche Wiirmefibertragungselemente wechselweise in 
heiBen und kalten Bereichen des Wiirmetauschers verwendet werden. Eine weitere AnwendungsmSglichkeit 
sind Hochtemperatur-Regeneratoren, bei denen zur Anniiherung der ,;l.nderung der Stoffeigenschaften des 
Fluids mit der Temperatur eine Aufteilung des Regenerators in mehrere Bereiche erfolgt, in denen diese 
Gr6Ben als konstant angesehen werden. Die Ergebnisse werden mit denen einer L6sung nach dem Finite- 
Differenzen-Verfahren fiir Betriebsdatens~itze verglichen. Weiterhin wird die Eignung des Verfahrens ftir 
lange Regeneratoren gezeigt und die Ergebnisse mit der LSsung yon Hausen und Literaturergebnissen 

verglichen. 
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HPHfi . I IHXKEHHbI17I  TEH.IIOBOi:::I A H A . ? I H 3  P E F E H E P A T H B H O F O  T E I U I O O B M E H H H K A  

AHllOTail~m--I~ipe~raBaeH IIpH6YlHXgeHHi,Ifi TeIIaOBOfi aHaJIH3 peFeHepaTHBHOFO TeIuIOO6MeHHHKa. 
HCnOab3ycMa~l aHIIpOKCHMalIH~[ OCHOBaHa Ha TOM, HTO 6e3pa3MepHbie n a p a M e r p H ,  H3B~THI~Ie Kag HpH- 
Be~eHHbIe nepHoRbI, He CJIHIMKOM BeJIHKH--ycYIOBHe, gOTOpOe yTOqH~IeTCg e HacTo~tuefi p a 6 o T e  H 
rOTOpOe cnpaBe~lJIHBO ~UI~ BCCX Bo3~yXOHaFl~BaTeJIe~ 3YtCKTpOCraHI/Stfi. H e  Cyl~eCTeyeT BepxHero 
n p e ~ e a a  yMeHbIlleHHblX pa3MepoB, K KOTOpOMy ~IaHHHfi MCTO~ MO~eT 6HTb IIpHMeHeH. [ IoayqeHbl  
ocpe~HeHHble IIO apeMeHH T e M n e p a T y p u  )I(H~KOCTH Ha al, txo~e,  3KBHB~LrleHTHhle TeMnepaTypaM, ebme- 
~eHHblM B pe3yJIbTaTe aHaytH3a aHaJIOrHqHOrO p e x y n e p a T o p a  Xay3eHa  (Verfahrenstecknik Z. Ver. Dt. 
lng. 2, 3 1 - 4 3  (1942)). PaC.£qHTaHO apeMeHHoe H HpocTpaHCTSeHHOe H3MeHeHHe TeMnepaTyp XHjlrOCrH H 
TeIIaOO6MeHHOFO 3YleMeHTa. MeToII o 6 o 6 m e H  Ha cay~af i  p e r e H e p a T o p a  c aByMfl n a n  6 o a e ¢  3OHaMH, 
HMeIOmHMH KO3(~HHHeHTbI TeHJIOO6MeHa, OTJIHqalomHo~fl RYlg ga~r~10fi 3OHI~I. MeTO~I tlpHMeHHM a 
pereHepaTHBHl,lx Bo3RyxoHaI'peBaTeYIgX 3JIeKTpOCTaHHHfi, r ~ c  pa3aHLiHble renaOOfMeHHble 3aeMeHTbI 
qaCTO HCrlOJIb3ylOTCll B rOp~lqHX H XO.rlO/IHbIX 3OHaX HarpeBart#all ,  H B a H c o r o T e M r t e p a T y p m a x  pe reHepa-  
Topax,  r a e  rI3MeHeHHe cBof ic ra  XHaxoerH c TeMnepaTypofi  M o w e r  6~axl, annpoKCHMHpOsaHo nyTeM 
pa3aeaeHHa  p e r e n e p a T o p a  Ha H e c r o m , x o  3OH C n O C T O a H H ~ H  CSOflerBaMH B Kax<ao~ H3 HHX. Pe3yal , -  
TaTI,I c p a B m m a r o x c a  c pettteHHeM B KOHe'-IIII, IX p a a H o e r a x  3ajlaLIH p e r e H e p a T o p a  ~zas H a 6 o p a  aaHm,~x 
/ l aa  CTaHtlHrl. l-lpo~IeMOHCTpHpo~aHa n p H r o / I n o e n ,  MeTO/la / l~a /LaHHHbtX pe reHepaTopoB;  pe3yabTaTb~ 

c p a m m B a r o T c a  c pemeHaeM Xay3eHa  H CTaH/IapTHHMH/IaHHIMMH, HMelOIIIHMHCfl B YtHTepaType. 


